Введение.................................................................................... 3
Глава I. Основные сведения об интеграле Пуассона и
пространствах , и ................................. 8
§I.1. Интеграл Пуассона..................................................... 8
§I.2. Пространства ....................................................... 12
§I.3. Пространства и ......................................... 17
§I.4. Произведение Бляшке, нетангенциальная
максимальная функция............................................... 22
Глава II. Атомические разложения функции в пространстве
, пространство ВМО........................................ 26
§II.1. Пространство , критерий принадлежности
функции из пространству ....................... 26
§II.2. Линейные ограниченные функционалы на ,
двойственность и ВМО.................................. 32
Литература.................................................................................. 37
Введение.
Целью настоящей работы является изучение основных понятий и результатов, полученных в области пространств Харди, которая не изучалась в рамках университетского курса. В работе прослежена взаимосвязь между следующими понятиями : интеграл Пуассона, пространства , , и , раскрыта суть и структура этих объектов. Описание указанных понятий вводится именно в такой последовательности , так как определение каждого последующего объекта дается на основе понятий, расположенных левее в выше перечисленном ряду объектов.
Работа состоит из двух глав, каждая из которых делится на параграфы. В первой главе изучены свойства пространств , , , а во второй мы доказываем коитерий принадлежности функции из пространству и двойственность пространств и .
В работе мы рассматриваем случай периодических функций. Используемые обозначения имеют следующий смысл:
- пространство периодических, непрерывных на функций;
- пространство периодических, бесконечно дифференцируемых на функций;
- пространство периодических, суммируемых в степени р на функций, т.е.для которых , ;
- пространство периодических ограниченных на функций;
- носитель функции .
В §I.1.вводится понятие интеграла Пуассона: интегралом Пуассона суммируемой на [-p,p] 2p-периодической комплекснозначной функции называется функция
¦r ( x ) = ,
где , t
Математика
- Аксиоматика векторного пространства
- Аппроксимация непрерывных функций многочленами
- Атомические разложения функций в пространстве Харди
- Внеклассная работа по математике в школе
- Использование ЭВМ при обучении математики
- К решению нелинейных вариационных задач
- О некоторых применениях алгебры матриц
- О неопределенных бинарных квадратичных формах
- Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области
- Понятие величины и её измерения в начальном курсе математики